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ABSTRACT

We introduce the notion of comparison of the criticality of two nodes in a

coherent system, and develop a monotonicity property of the reliability function

under component pairwise rearrangement. We use this property to find the optimal

component arrangement. Worked examples illustrate the methods proposed.
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1. Introduction

Optimal assignment of components (or optimal assembly) of a coherent system

has become increasingly important in reliability theory. Generally speaking, given a

coherent system with n nodes and N components with respective reliabilities

Pit,...,PN., we wish to find the optimal assignment of components to nodes to maximize

system reliability. For a series, parallel, and k-out-of-n system, the optimal

assignment was obtained by Derman, Lieberman, and Ross (1974). Recently El-

Neweihi, Proschan, and Sethuraman (1986) developed results for parallel-series and

series-parallel systems. The problem received greater attention after the

publication of the Derman, Lieberman, and Ross (1982) paper developing the optimal

arrangement for a "2-consectuve failures-out- of-n fails system" and stating their

famous conjecture on the "k-consecutive failures-out-of-n fails system."

If the numbers of nodes and components are the same (i.e., n = N) and if

each component is to be assigned to one node, then an assignment policy is just an

arrangement policy. In this case, we wish to find the arrangement which maximizes

system reliability. Using the notation in Barlow and Proschan (1981), we let *(x)

denote the structure function of the system and p = (p,...,pn) denote the vector of

component reliabilities. Without loss of generality we assume that
0 < PI < P2 :9 ... ! N <(

and for obvious reasons, we avoid the trivial case p, 0 or pf - 1. In real-life

applications the true values of the p,'s may or may not be known, and in most cases

they are unknown. Thus to obtain the main results in this paper, we assume

knowledge of only the ranks of the component reliabilities and not their actual

values. This situation occurs, for example, when the ages of the components are

known and when their common life distribution has an increasing failure rate. In

this case with mission length fixed, the component reliabilities can be inversely

ordered according to their ages.

Let r - ( denote a permutation of (,2,...,n) and let _(p) denote the

vector (p,,,p,,,....pwJ. Then for a givn permutation i, the corresponding reliability

function of the system is h(,r(p)) = Er(p)O(.

Assume a coherent system O(x) and component reliability vector p satisfying

(1). Then we state:
101 0 0Definition 1. ( ,-., is said to be an optimal permutation if

h(p)) - max h(r(p)). (2)
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In this paper we provide a method for obtaining the optimal permutation (or

one of the optimal permutations if it is not unique) by a process of elimination.

This process depends on a notion of criticality of the nodes of a coherent system,

to be defined in Section 2. Our main theorem says that if the node i is more

critical than node j and if under the current permutation i a less reliable

component is assigned to node i, then an improvement is made by interchanging the

components assigned to nodes i and j; we denote this interchange by 1r, and call the

resulting permuation a pairwise rearrangement. Consequently, i can be eliminated

from further consideration. The optimal permutation Ir (0 is then determined from

the permutations not yet eliminated.
.

To illustrate how an optimal permutation depends on the criticality of the

nodes we consider the following example:

Example 1. Suppose that oil is to be pumped from location A to location B through

either nodes 1 and 2 or nodes I and 3.

Location A Location B '

Figure 1.

If pumps with respective reliabilities p, < p2 - p3 are to be assigned to nodes 1, 2,

and 3, the problem is to find the assignment for which the reliability of the

coherent system with structure function

O(X
1

,X 2 ,X 3 )= x1(x X X3)=

is maximized. We shall see that according to Definition 2 to be given in the next

section, node 1 is more critical than either of nodes 2 and 3. Thus by pairwise

rearrangements an optimal permutation is found; under it, the most reliable pump is

assigned to node 1. The details will be gi'en in Example 1'. 0

The definition of criticality of a node is given in Section 2. The main

theorem concerning criticality and pairwise rearrangements is then established. The

relationship between criticality and the well-known definition of structural

importance of nodes is examined in Section 3. Finally, in Section 4 we state a

procedure for obtaining the optimal permutation via criticality and rearrangements,

and discuss examples and applications.

~ . V . -. . . . . . . . .
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2. Criticality of Nodes and Pairwise Rearrangements

Let x - (x,,...,x.) be a vector of binary variables and O(x) the structure

function of a coherent system. The components (with reliability vector p) are

assumed to function independently. For notational convenience, let (l1,OjY be

- the vector x for which x, - I and x = 0, and x" Ji is the vector obtained by
(iJJ(deleting x, and xj in x. The vectors (0tlj,x ), etc. and p are defined similarly.

Definition 2. Node i is more critical than node j for the structure function 0
(i > (j) if Q(l,,O:,x) W) (O~l1,x"': ) holds for all x (Q and strict inequality holds for

(14)

come x

Note that this definition depends only on the structure function O(x) of a

coherent system, and not on the component reliability vector p.

Al Now let ir = (ri....,N) and w denote permutations as defined in Section 1.

If , < 7rj, then from (1) we have p.r, - pi. . Thus under the present permutation

4w ra less reliable component is assigned to node i. If the components assigned to

nodes i and j are interchanged and the components assigned to the other nodes

--" remain the same, then the reliability function changes from h(x(p)) to h(T(p)), and

under the new permutation _l a more reliable component is assigned to node i.

Theorem 1. Let w be any permutation such that 7r, < -. Then h(r 1 (p)) ; h(r(p))

, holds for all p satisfying 0 < p-1 e Pw j < 1, with strict inequality for some p, if
", "c

and only if, i > j holds.

Proof. (a) (1) It is easy to see that for q, 1 - pr (r = I.....n),
h (ir(p )) - P r p E .(p~tlJ E( + q q E .K( (0 ,j,X ")

+ P,- q E t 0(ljX,', ' I + q,, E (X.

and that IJJ 1 1
and that i+p)" - ijtp) . Thus if 0(1 ,O,x'' 4 ' (0l,x holds for all x"* , then

OJO.
i° - h((p)) (pr qw, - Pr q7 )E j[4[1 100 JOd -(0.,1.X' 0.

(a) (2) Furthermore, if 0(l,,OJ,X"J') - I > O(OljI,xJ') = 0 for some xJIi, then
I*
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we have

1 = h( w,(p)) > h(,r(p)) = 0,

where p is a vector of 0's and l's such that pr, = 0, p-T 1, and

P Ir[Q) -= xt J) = 1. Since h(p) is a continuous function of p for p E [0,1]",r(p)- -0 • "-

there exists a p E (0,1)" such that h(. t(p)) - h(x(p)) > 0.

C 0tJ)(
(b) If i > j does not hold, then either O(It,0jx ) 40ilxo ) for all xItl (in

this case h(wtj(p)) - h(ir(p))) or there exists an x"IJI such that *(l,0Ox ") 0 and

O(0tl#, ) = 1. In the latter case we conclude by an argument similar to that used

in (a) (2), that there exists a p E (0,1)' such that h(r!(p)) < h(r(p)) holds. This

completes the proof. 0

For certain structure functions O(x) the minimum path vectors and minimum

cut vectors are easy to find. In these cases the criticality of two nodes may be

established in terms of such vectors.

Theorem 2. Let P1,...,PR be the minimum path sets of a coherent system with nodes

1,...,n and structure function O(x). Let A, = {Pr: i E P,, r = 1,...,R). If Aj is a
c

proper subset of A, (A, D Aj), then i > j.

Proof. If A, D A,, then without loss of generality we may assume that
A j -= P ,...,P ,), A, - (P ,...,P 2)

Ji)where r, < r. . Denote o,(x) = F [ xk. Then for every fixed x , we have
kEPr

j -r'l ,0 ,x # Y) m r(0i 1, 0 for r <. r, and

Pr(l ,0j,XOp ) O pr(Ot,1j,[ tj ) 0 for r, < r <- r2,

with strict inequality holding for some r and x" '. Moreover,

Pr(l ,,xA1J) -r(0,1,x" I for r, < r R.

It follows that

J) J) RJ)

-- r!1 r I j

holds for all x , with strict inequality holding for some x' 0

By a similar proof we immediately have
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Theorem 3. If in Theorem 2 the words "minimum path sets" are replaced by

"minimum cut sets," then the theorem remains true.

To see that the converse of Theorem 2 (and of Theorem 3) is false, see the

example below:

Example 2. Consider a system of 6 nodes connected as shown in the following

diagram:

2 4

6

Figure 2.

It is easy to verify that 3 > 2 and that P, -( 1,2,4) is a minimum path set that

does not contain 3. 0

3. Criticality and Structural Importance

A well-known concept for comparing the relative importance of nodes in a

coherent system with structure function O(x) is based on the index of structural

importance. The structural importance index of node i is given by (Barlow and

Proschan (1981), p. 13)):

I ()  .l 35 1 , -)]
I~( - {x:x =1)

where (1,x) ((O,x)) denote the vector of x such that x, . 1 (xi 0). For two

nodes i and j, we say that i is structurally more important than j if l(i) > I0(j). In

the following theorem we show that the notion of criticality is in some sense

stronger than that of structural importance.

Theorem 4. Let i and j be two nodes of a coherent system with structure function
" c

W (x) if i > j, then 10(i) > 1 00)

'p
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Proof. The result is immediate from

I j 2tt, O(0t,Ij,xC1,1)]j > 0. 0"
0ei -- 2n(j -- 0 j) ,u,

C
To see that I@(i) > 10(j) does not imply i > j, simply note the. following

example.

Example 3. Consider a system of 5 nodes connected as shown in the following

diagram: 3

Figure 3.

It is easy to verify that l(1) > I.(3). But

0 = O(l,,0,0) < 0(0,1,1,0,0) 1,

1 0 *(1,0,0,1,0) > 0(0,0,1,1,0) 0.

C C
So neither 1 > 3 nor 3 > 1 holds. 0

4. Optimal Arrangement Via Pairwise Rearrangements

In this section we give a procedure for obtaining the optimal permutation (or

one of them if it is not unique) by a process of elimination of inadmissible

permutations via pairwise rearrangements. Toward this end we first state a

definition of and develop a result for the permutation equivalence of nodes.

Definition 3. Let h(7r(p)) = E O(X) be the reliability function of a coherent
- '!~r(p) J

system under permutation 7. Two nodes i and j are said to be permutation

equivalent (p.e.) under ?r if h((p)) = h(?ru(p)) holds for all p.

The next theorem provides a characterization of permutation equivalence in
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terms of the structure function O(x).

Theorem 5. Nodes i and j are p.e. under any permutation ? if and only if O(x) is

permutation symmetric in x, and xj; that is, O(xIxjx I  * (xj,xx,'3 1 ) holds for all
x(Q)

Proof. (a) If O(x) is permutation symmetric in x, and x,, then

h(jr(p)) == E (p)O(X.,X ) E .(p)O(XjXt9 ( ))

E *p.(X,X j,X"")E.A~(
--- E. ) ="

(b) If -(lj,Ojxc
#t )) = 1, 0(0,l,x c('J)) - 0 for some xgJ1, then for the vector p with

elements 0's and l's such that pw, = 0, P - 1, Pp)[X(  = -6'] - 1, we have

h( r(p)) = 0, h(0rj(p)) = 1. By continuity there exists a p E (0,1)' such that

h(wr(p)) < h( ri(p). 0

Let II denote the set of all n1 permutations.

Sd

Definition 4. A permutation 7 E 11 is said to be inadmissible if there exists a

x' E I1 such that h(w(p)) - h(1'(p)) holds for all p satisfying (1) and strict

inequality holds for some p.

From Theorem 2 we immediately obtain:

c
Corollary 1. Let 7r be any permutation such that w, < wr. If i > j, then w is

inadmissible. As a consequence, 7 should be eliminated from further consideration

because wi, is a uniformly better permutation.

This suggests the following procedure for obtaining an optimal permutation

from the subset of permutations not yet eliminated:

Procedure. (a) Eliminate all inadmissible permutations via the pairwise rearrange-

ment principle.

(b) Delete all but one of the permutations which are permutation equivalent.

(c) Let 1l0 C 11 denote the subset of permutations which are not yet eliminated or

deleted. Find a permutation i0 in 110 satisfying
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h(01(p)) max h( (p))" " Ir EI~ ",0

either analytically or (when necessary) from numerical calculations where the pi

values are known. Then w'o is an optimal permutation.

We now illustrate this approach in the examples given below.

Example 1'. Consider the system given in Example 1. Since the structure function

is O(x) = x1 (x 2 U x,), it is easy to see that nodes 2 and 3 are permutation equivalent
c c

and that 1 > 2, 1 > 3. Thus among the 6 permutations in fl, 123, 132, 213, 231 are

inadmissible, and both 312 and 321 are optimal.

Example 4. Consider the more general system given below:

M+.I

Figure 4.

From the structure function of the system it is easy to verify that (1) nodes i and
c

j are permutation equivalent for 1 < i < j <! m and m+l i < j ! n, and (2) i >

j for all i m and j > m. Thus under an optimal permutation the m most reliable

components are assigned to nodes 1,2,3,...,m. 0

Example 5. Consider a system consisting of 7 components connected in the following

fashion:

20

Figure 5.

:_" _eZr , " " "". , :" :" ":". . ."""";" " "."" " . ".-. " " "" ,&" ":, .- , :"' . :"' ', "_ . , :.. - .: .A ..'-.-
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Here I > j for all j > 1; 2 > 4; 2 > 5; 3 > 6; and 3 > 7. Furthermore, the

modules {2,4,5) and {3,6,7) are permutation equivalent. Thus any permutation

i C 110 must satisfy: r = 7, ir- > max(T.,irs), and 73 > max(r 6,7r,). It follows

that there are only (6 )/2 = 10 permutations left in 1f0 for consideration. [For
3,

example, (7361245), (7461235) are in 110 but (7341265) is inadmissible and is not in 11o.1

Without this elimination process we would need to consider all 7!/(2!)3 = 630

permutations. If the p, values are known and the values of h( (p)) are to be

computed on a computer for selecting the best permutation, then the use of the S
procedure will reduce the computer time by a factor > 50. Of course, when

combining with other results (see e.g., El-Neweihi, Proschan, and Sethuraman (1986)),

we can reduce the number of permutations to be considered even further. But that

is a separate problem and will not be treated here. 0

Example 6. Consider a consecutive-k-out-of-n system or a "k-consecutive failures-

out-of-n fails system" with nodes connected linearly. Tong (1985) shows that under

the optimal permutation policy: 7r, < i2 < ... < [,+I]/2 and x -+j/i > i c[+31/2 > ...

2> ", when k 2 n/2. The proof uses the explicit expression of the system

reliability function. We now show that using the more general principle of pairwise

rearrangements, the Tong result follows without knowledge of the reliability

function.

To see this, note that for the consecutive k-out-of-n system (the k- (
consecutive-failures-out-of-n-fails system) the minimum path sets (the minimum cut

sets) are: (1,2,...,k), (2,3,...,k+1), (3,4,...,k +2),...,(n -k+l,...,n), where k n/2.

Thus, in the symbols of Theorem 2 (Theorem 3), A, 9 A, holds for all 0
n+1 n+1 c1 j < i " -- and - i > j n. Consequently i > j for all ij satisfying

these inequalities (unless i and j are p.e.). The rearrangement inequality in Tong

(1985) now follows. 0

N.'

d.

1o

S
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